
www.manaraa.com

Computing (2017) 99:255–285
DOI 10.1007/s00607-016-0489-6

A decision tree logic based recommendation system
to select software fault prediction techniques

Santosh S. Rathore1 · Sandeep Kumar1

Received: 22 January 2015 / Accepted: 24 February 2016 / Published online: 21 March 2016
© Springer-Verlag Wien 2016

Abstract Identifying a reliable fault prediction technique is the key requirement for
building effective fault predictionmodel. It has been found that the performance of fault
prediction techniques is highly dependent on the characteristics of the fault dataset. To
mitigate this issue, researchers have evaluated and compared a plethora of fault predic-
tion techniques by varying the context in terms of domain information, characteristics
of input data, complexity, etc. However, the lack of an accepted benchmark makes it
difficult to select fault prediction technique for a particular context of prediction. In this
paper, we present a recommendation system that facilitates the selection of appropri-
ate technique(s) to build fault prediction model. First, we have reviewed the literature
to elicit the various characteristics of the fault dataset and the appropriateness of the
machine learning and statistical techniques for the identified characteristics. Subse-
quently, we have formalized our findings and built a recommendation system that
helps in the selection of fault prediction techniques. We performed an initial appraisal
of our presented system and found that proposed recommendation system provides
useful hints in the selection of the fault prediction techniques.

Keywords Recommendation system · Software fault prediction · Decision tree ·
Software fault prediction techniques

Electronic supplementary material The online version of this article (doi:10.1007/s00607-016-0489-6)
contains supplementary material, which is available to authorized users.

B Sandeep Kumar
sandeepkumargarg@gmail.com

Santosh S. Rathore
sunnydec@iitr.ac.in

1 Department of Computer Science and Engineering, Indian Institute of Technology Roorkee,
Roorkee, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-016-0489-6&domain=pdf
http://dx.doi.org/10.1007/s00607-016-0489-6

www.manaraa.com

256 S. S. Rathore, S. Kumar

Mathematics Subject Classification 68N30 Mathematical aspects of software
engineering (specification, verification, metrics, requirements, etc.)

1 Introduction

Software fault prediction (SFP), in principle, can play a vital role to ameliorate and
streamline the software quality assurance process. It may help in reducing unnecessary
fault finding efforts during the development of the software system. Typically, a fault
prediction system uses software metrics and fault dataset (collected from the previous
releases or similar projects) to train a fault-prediction model. Subsequently, it uses
this model to predict the faults in the current release of the software system. It helps
in locating the software modules that are more prone to faults. This could be helpful
when the project resources are limited or the system is too large and could not be
tested exhaustively.

Various factors affect the performance of software fault prediction such as, software
metrics, learning algorithms and others. One of the concerns with software fault pre-
diction is the evolution of code bases [1]. Suppose, we built a fault prediction model
based on some set of metrics and used it to predict the faults in the given software
system and fixed the faults. Now, software system has evolved to accommodate the
changes, but there may be the case when the values of used set of metrics did not
change. In that case, if we reuse the built fault prediction model, it will re-raise the
same code area as fault prone. This is a general problem of fault prediction models,
if we use the code metrics [2]. To handle this issue, some researchers have proposed
different set of metrics, such as software change metrics, file status metrics, etc [1,2].
These metrics analyze the change history of the software to determine the modules
that are more likely to have faults when software evolved.

For developing a software fault prediction model, choosing a better learning algo-
rithm is shown to be equally important as selection of software metrics and other
parameters [3–5]. However, the selection of correct fault prediction technique is a
challenging issue. Numerous variables and factors influence this selection process.
Previously, a myriad of different machine learning and statistical methods have been
proposed and validated by various researchers to facilitate fault prediction process. It
includes the techniques based on Naive Bayes [6], Logistic Regression [7], Support
Vector Machine [8], Neural Network [9], Ensemble classifiers [10], etc. There are
variations upon the use of these techniques to build fault prediction model [11].

Many authors have performed studies comparing an extensive set of techniques for
their fault prediction capabilities, and have reported the usability of the techniques in
various contexts [12–16]. The aim of these studies was to choose the best predictor
among many other available techniques for improved fault prediction. Catal et al.
[11] have compared various machine-learning techniques for software fault prediction
problem and found that characteristics of the dataset have a strong influence over the
performance of the fault prediction techniques. The technique found best for one
type of dataset might be performing poorly for another type of dataset. In another
study, Menzies et al. [3] have assessed various classification techniques for software
defects prediction and found that for different types of datasets, the performance of the

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 257

prediction techniques also varies. These studies show there is no single best technique
that can be used with any type of dataset for fault prediction. Moreover, we found that
there is a contradictory view over the usefulness of the fault prediction techniques.
Some studies established the usability of some techniques for fault prediction, while
other studies prompting questions about the same set of techniques. One possible
reason for this unpredictable performance of the fault prediction techniques is that
most of the studies have used the fault prediction techniques as a black box without
analyzing the domain of the dataset. The fault prediction model may perform best
when right technique is selected for the right set of dataset.

What sorely missing is a clear understanding that up to what extent data influence
the performance of classifiers and how to make choice of the prediction techniques
for improved fault prediction process. This raises the need of a baseline framework
or recommendation system, which based on the characteristics of the software fault
dataset, can suggest technique(s) for building fault predictionmodel. To the best of our
knowledge, no such systemhas been reported in the literature.We aim to provide such a
recommendation system by gathering an extensive knowledge about the fault dataset
characteristics and by developing the correlation-ship between the fault prediction
techniques and the identified fault data characteristics. As an effort, this paper presents
a decision tree logic (DTL) based recommendation system that may be helpful to the
practitioners or the researchers in the selection of the most appropriate fault prediction
technique for a given target system.

In a software product, if we are predicting faults across the different releases, then a
technique valid for one release should be consistently used for other releases also. But,
if there are significant changes in a release of the software system that possess different
fault dataset characteristics, then the technique used for fault prediction should also
change. This situation is also taken care of by the proposed recommendation system.
The proposed system initially identified the fault dataset characteristics of the given
software and the based on these identified characteristics the recommendation regard-
ing the suitability of fault prediction technique is given. Hence, if there is no significant
change in the fault characteristics for a given release then there will not be change
in the recommendation regarding fault prediction techniques. But, in the case, there
is a significant change in the fault datasets characteristics then the recommendation
regarding the fault prediction techniques is changed.

The remainder of the paper is organized as follows. Section 2 discusses the related
work. Section 3 presents the taxonomical classification of software fault prediction
techniques. Technique recommendation system is presented in Sect. 4. It includes
architecture of the recommendation system, system workflow, some sample rules
and implementation of recommendation system. Section 5 specifies the details of
the datasets used and evaluation of recommendation system. Some case studies to
validate the recommendations provided by the proposed system are presented in Sect.
6. A comparative analysis of the proposed work with other similar existing works is
given in Sect. 7. The paper has been concluded in Sect. 8.

123

www.manaraa.com

258 S. S. Rathore, S. Kumar

2 Related work

An important issue associated with the software fault prediction is the problem of
selecting appropriate fault prediction techniques. Simply put, not all techniques can
provide accurate prediction across different datasets and using them for prediction
without analyzing the datasets domain may lead to lower prediction performance.
Some efforts have been reported to solve this problem in order to provide guidance
regarding the fault prediction technique selection.

Challagulla et al. [12] performed an empirical study using variousmachine learning
techniques for software fault prediction. The study was performed over four software
projects taken from the NASA data repository. Results found that not a single machine
learning technique is consistent in predicting faults with higher accuracy across dif-
ferent datasets. Further, results suggested that the best choice of a fault prediction
technique depends on the dataset available at a particular moment. Dejaeger et al. [17]
investigated theperformanceofBayesianNetworkClassifiers for software fault predic-
tion. Theyhaveusedfifteen differentBayesianNetworkbased classifiers and compared
them with other popular machine learning techniques. Results found that Naive Bayes
and Random Forest are the most accurate predictors of software faults among the tech-
niques considered and the performance of best technique depends on the development
context. Ma et al. [10] presented a statistical framework for fault proneness prediction.
The study compared the performance of Random Forest with ten other classifiers over
five NASA datasets. Results showed that Random Forest performed well for large and
diverse datasets, while Logistic Regression and Discriminant Analysis have produced
a good performance for small datasets.

Stefan Lessmann et al. [15] performed a comparative analysis of twenty-two clas-
sifiers for software defect prediction. The experiments were performed over the
ten datasets collected from NASA data repository. Additionally, they have applied
hypothesis-testing methods to investigate the statistical significance of performance
difference among the different used classifiers. Results found that there is no significant
performance difference among the top seventeen used classifiers. Furthermore, they
have investigated whether certain type of classifiers have produced significant accu-
racy over some datasets and then can be used, if similar type of software projects are
encountered in future. However, no recommendation system or framework has been
provided to guide the selection of fault prediction techniques. In another study, Zhong-
bin et al. [14] investigated the performance of four classification algorithms, three data
coding schemes, and six conventional imbalance data handling methods over fourteen
NASA datasets for handling imbalanced data problem. Results showed that C4.5,
Ripper, and Random Forest performed better for imbalanced data, while Naive Bayes
produced an average performance. Kanmani et al. [18] investigated the effectiveness
of Probabilistic Neural Network (PNN), Back propagation Neural Network (BPN) and
Discrimination Analysis over a dataset collected from student projects. The experi-
ment was carried out on a small system and found that overall PNN based prediction
models performed well in comparison to other used techniques.

Zimmermann et al. [19] reported a study for cross-project defect prediction over
twelve software project datasets collected from the real-world applications. Addi-
tionally, they have identified various factors that do influence the success of the

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 259

cross-project defect prediction. Their study provided some suggestions regarding the
dataset selection when performing cross-project prediction. However, no information
was provided regarding the selection of the fault prediction techniques for the given
datasets. Pickard et al. [20] performed an investigation of three statistical-based data
analysis techniques for software fault prediction. They considered skewness, unstable
variance, and outliers characteristics of the considered fault dataset and investigated
the performance of the used analysis techniques with respect to these characteristics.
Results found that no single analysis technique produced best results. Further, they
suggested that it is important to identify suitable fault prediction technique to be used
in a given environment for better prediction results.

These studies provide some guidance regarding the use of fault prediction tech-
niques. However, they did not discuss the effect of dataset characteristics on the
performance of classifiers comprehensively. Furthermore, they have not proposed or
discussed any framework that helps the naive users for appropriate fault prediction
technique selection. To fulfill this gap, our work aims to present a recommendation
system that takes input of some parameter values regarding the fault datasets char-
acteristics from the user and based on the given values, it suggests the best-suited
techniques to build fault prediction model.

3 Classification of software fault prediction techniques

Various researchers have used different set of techniques to develop software fault pre-
diction models. It includes several statistical techniques such as Logistic Regression,
Discriminant Analysis, etc. and different machine learning techniques such as Deci-
sion Trees, Neural Network, Support Vector Machines and some ensemble techniques
like Random Forest, Bagging, etc. [6–10]. In their paper, Dejaeger et al. [17] proposed
a taxonomic classification of software fault prediction techniques. Among others, the
works on classification of fault prediction techniques available are Stefan et al. [15],
Witten et al. [21]. Encouraged from these works, we have proposed a theoretically
complete classification of software fault prediction techniques as shown in Fig. 1. We
further used it for recommendation system development.

Tree based classifiers are supervised learning methods used for classification. They
create a tree type of structure that classify the value of target variable in one of the given
classes by learning some decision rules deduced from the data features [22]. Feature

Techniques Used for Software
Fault Prediction

Tree Based
Techniques

Perceptron
Based

Techniques

Statistical
Methods

Evolutionary
Based

Techniques

Kernel Based
Techniques

Bayesian Network
Based Techniques

Ensemble
Classifiers

Instance Based
Techniques

Clustering

• ID3
• C4.5
• CART
• J48
• MARS
• CART-LS
• CART-PLUS

• Neural
Network,

• Multi-Layer
Perceptron

• Back
Propagation,

• Probabilistic
Neural
Network

• Linear
Regression

• Logistic
Regression

• Discriminant
Analysis

• Correlation
Analysis

• Genetic
Algorithm

• Ant Colony
Optimization

• SVM
• LS-SVM
• Kernel

Estimator

• Naive Bayes,
• Augmented

Naive Bayes,
• General Bayes

• Random
Forest

• Bagging,
Boosting

• Stacking

• K-mean
• IBK
• IB1

• K-means
clustering

• Fuzzy clustering
• X-mean

clustering
• Neural-Gas

clustering

Fig. 1 Classification of software fault prediction techniques

123

www.manaraa.com

260 S. S. Rathore, S. Kumar

that best splits the training data will serve as the root node of the tree. Perceptron
based techniques consists of a series of processing elements interconnected through
the connection weights in the form of layers. During the training phase, based on the
domain knowledge, they develop an internal representation that maps the input stimu-
lus space to the output response space [23]. Statistical based techniques formulate and
use some statistical formula to determine the relationship between the software mod-
ule properties and the fault proneness [23]. Evolutionary based techniques generally
use some search methods to mimic the process of natural selection. They generate a
population of solutions and then evolve them towards the best solution. The algorithm
usually starts from a population of randomly generated solutions and at each iteration
the fitness of generated solution is evaluated and modified to find out the optimal
solution [24]. A Bayesian Network shows a joint probability distribution over a set of
discrete or continuous variables. It is a graphical model that contains a set of nodes
representing various variables and directed arcs showing the existence of dependen-
cies between variables [17]. Ensemble classifiers are the learning methods that use
multiple learning algorithms, instead of one, to obtain the better prediction results.
Each of the used learning algorithms solves the same original task and then results are
combined to obtain a better global model with more accuracy and reliability compared
to the one obtained by any single learning method [25]. Instance based classifiers are
the learning methods that compare unseen instances with the instances given in the
data. Based on the stored knowledge, it classifies the instances into one of the given
classes. They do not generate any explicit generalization of the data points. Generally,
they are known as lazy classifiers [23]. Clustering based techniques are unsupervised
learning techniques that group a set of objects in such way that instances of similar
properties are kept in the same group. Clustering analysis uses an iterative task that
learns from the training data and updates its knowledge to find out the optimal set of
groups [26].

4 Proposed recommendation system

The proposed fault prediction technique recommendation system is based on the con-
cept of decision tree logic. It intended to help the practitioners or the researchers
in selecting the most appropriate fault prediction technique to use for building any
software fault prediction model. The system inquires about some parameters related
to the fault dataset characteristics to the users and based on the provided answers it
recommends the most suitable technique that can be used for building fault prediction
model for the given fault dataset.

4.1 Architecture of the proposed recommendation system

The basic modules of the recommendation system are shown in Fig. 2. The presented
recommendation system has four parts: Rule database, knowledge base and decision
tree learner, interface module and recommendation display module.

Rule database consist the set of rules formed by collecting the information from
various sources. The knowledge base is composed of inference rules, facts, and rela-

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 261

Technical Literature

Surveys

Existing Implementation

Review Work

So
ur

ce
 o

f D
om

ai
n

K
no

w
le

dg
e

User

Expert Interface

Knowledge Base

Domain Expert

If-thenelseRules

List of Fault Prediction
Techniques

List of Fault Data
Characteristics

Rule
Database

FactsInference
Rules

Decision
Treebased

Learner

Recommendation
Display Module

User Interface

Fig. 2 Architecture of recommendation system

tionships used by the recommendation system. It stores the inference rules in the form
of “F...THEN...ELSE”. The rules are formed by varying the values of the fault dataset
characteristics. The knowledge base also consists of a decision tree trained from the
available rules. The main function of the decision tree is to provide an appropriate
and convenient way to capture and store all the information available in the knowl-
edge base. The user can interact with the system using the user interface module. This
allows user to select the values of various parameters regarding the fault dataset that
helps in selection of fault prediction techniques. The expert interface allows the expert
to interact with the system. The expert has the right to review, delete, or modify any
parameter from the database. The expert interface module and user interface module
help recommendation system to learn about the rules and users when any modification
is needed. The system takes fault data characteristics as input from the user and the
recommendations are generated as output using the decision tree.

4.2 System work flow

It can be seen fromFig. 2 that one of themajor task for the development of the proposed
recommendation system is to develop a decision tree (Sect. 4.2.2). However, prior to
that various characteristics of fault datasets to be considered for decision making also
need to be finalized (Sect. 4.2.1).

4.2.1 Dataset characteristics

We have surveyed the literature and identified following ten characteristics of the fault
dataset that most influence the performance of the classifiers during software fault
prediction:

1. Noise According to Manago and Kodratoff [27] “noise is present when a knowl-
edge base does not truly reflect the environment we want to learn from”. It reflects
the “lack of information or unreliable information”. The presence of noise reduces
the efficiency of the classifiers and the learning algorithm cannot find a function
that exactly matches the training examples.

2. High dimensionality of input spaceHigh dimensionality of data refers to having
toomany features (softwaremetrics) in the input/training dataset. The high dimen-
sion of input feature vectors may cause a problem for learning algorithm [28,29].

123

www.manaraa.com

262 S. S. Rathore, S. Kumar

3. Heterogeneity of the data If the feature vectors contain features ofmany different
natures such as discrete, discrete ordered, counts, continuous values etc., then data
is called as heterogeneous data. Some algorithms are easy to apply for this type
of data, while many other algorithms require that the input features be numerical
and scaled to similar ranges [30].

4. Redundancy in the data Redundant instances occur when the same feature
describes multiple modules with the same class label [30]. Some algorithms will
perform poorly in the presence of redundant data points because of numerical
instabilities.

5. Outlier Outliers are the data points that do not meet with the general behavior of
the data. Such data points, which are different from the remaining data points, are
called outlier [31]. They are also referred to as abnormalities, discordant, deviants,
or anomalies in the datasets.

6. Missing valueMissing value is the value that left blank in the dataset [30]. Some
of the prediction techniques can automatically deal with the missing values and
no special care is required. Whereas, some techniques others require extra care
for this.

7. Amount of training data Amount of training data available to train learning
algorithm plays an important role in the classifier performance. If the training set
is small, high bias/low variance classifiers have an advantage over low bias/high
variance classifiers, since the later will overfit [12].

8. Class imbalance Class imbalance represents a situation where certain type(s) of
instances (called as minor class) are rarely present in the dataset compared to the
other types of instances (called as major class). It is a common issue in prediction,
where the instances of major class dominate the data sample as opposed to the
instances of the minor class. In such cases, learning of the classifiers may be
biased towards the instances of major class. Moreover, classifiers can produce
poorer results for the minor class instances [32].

9. Learning function Type of interaction between the features (software metrics for
the fault dataset) may influence the classifiers performance. If each of the features
makes an independent contribution to the output, then algorithms based on linear
functions generally perform well. However, if there are complex interactions
between features, then algorithms based on non-linear function work better [8].

10. Type of dependent variable Dependent variable represents the type of output
value or response of a classifier. It can of categorical or continuous types. Some
algorithms are able to handle both types of variable, whereas, others require
specific type of the dependent variable for prediction.

We have gathered evidences from existing empirical and theoretical studies [31,
33–38] to decide the possible set of values for the various fault data characteristics
mentioned above. Based on the observations obtained from these studies, we have
decided the values of different fault dataset characteristics. Following are the range
of the values that are used to decide that when a characteristic can be marked as ‘yes’
and when it should be marked as ‘no’.

1. Noise: yes (≥40%), no (<40%) [35]
2. Missing value: yes (≥30%), no (<30%) [33]

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 263

3. Imbalanced data: yes (>20%), no (≤20%) [34,36]
4. High data dimension: yes (number of features (n) > 20), no (n ≤ 20) [37]
5. Outlier: yes (>5%), no (≤5%) [31]
6. Amount of trainingdata: small (number of examples (n) ≤ 500),moderate (500 <

n < 1000), Large (n ≥ 1000) [37]
7. Data redundancy: yes (if two features has correlation≥80%), no (otherwise) [38]
8. Heterogeneity of data: yes (if features follow different distribution), no (other-

wise) [37]
9. Learning function: (a) linear, (b) non-linear [8]

10. Dependent variable type: (a) continuous, (b) categorical [37].

For gathering the values of these characteristics, user needs to get an understanding
of fault dataset beforehand. Subsequently, based on the knowledge of the dataset, value
of each characteristic can be marked as ‘yes’ or ‘no’.

4.2.2 Generation of decision tree

A decision tree logic based recommendation system comprises a set of if-then-else
rules, a collection of facts, and an interpreter to analyze the rules given the facts.
These if-then-else rules are used to devise the conditional statements that comprise
the complete knowledge base [60].

The main advantage of using decision tree based approach is its comprehensibility.
Moreover, it performs well even if its assumptions are somewhat violated by the true
model from which the data were generated [22,23]. It handles overfit problem in an
easy and well-mannered way. Decision tree uses a pruning method to avoid the overfit
problem and gracefully adopt for the available training data [22]. Other advantage
of building a model using a decision tree is that it is easy to develop and is fast in
classifying unseen examples [61]. In addition, decision tree can be used to generate a
set of rules that are easy to understand while providing accuracy comparable to other
techniques. The use of rules with the extension of decision trees is easy to understand,
easy to generate and they can classify new examples efficiently [60]. They improve
the performance of a recommendation system by introducing domain knowledge with
the decision tree [62]. In addition, decision tree is capable to learn the domain even if
the partial information about the fault dataset characteristics is available [23].

4.2.2.1 Designing rules for decision tree development For the development of the
decision tree for the proposed recommendation system, initially some significant if-
then-else rules need to be designed. To design the rules, we performed an extensive
study of the literature [23,24,40,41,43–45,50,58] and gather information about the
influence of various characteristics of the fault dataset (Sect. 4.2.1) on the various
considered fault prediction techniques (Sect. 3). The output of this study is given in
Table 1. The last columnof this table shows the studies based uponwhich the suitability
of fault prediction techniques (first column of the table) for the given set of fault dataset
characteristics (column 2 to 11 of the table) is established. The values corresponding to
dataset characteristics stored in the table are showing the scenarios inwhich a particular
technique could be applicable. The entries marked = yes in the Table 1 indicate that
corresponding classifier can handle both the presence and the absence of the particular

123

www.manaraa.com

264 S. S. Rathore, S. Kumar

Ta
bl
e
1

K
no
w
le
dg

e
da
ta
ba
se

re
ga
rd
in
g
th
e
ap
pr
op

ri
at
en
es
s
of

fa
ul
tp

re
di
ct
io
n
te
ch
ni
qu

es
fo
r
gi
ve
n
ch
ar
ac
te
ri
st
ic
s

Te
ch
ni
qu
es
/

ch
ar
ac
te
ri
st
ic
s

N
oi
se

M
is
si
ng

va
lu
es

Im
ba
la
nc
ed

da
ta

H
ig
h
da
ta

di
m
en
si
on
al
ity

D
at
a

re
du

nd
an
cy

O
ut
lie

r
A
m
ou

nt
of

tr
ai
ni
ng

da
ta

re
qu

ir
es

H
et
er
og
en
ei
ty

of
da
ta

L
in
ea
ri
tie
s/

no
n-
lin

ea
ri
tie
s

D
ep
en
de
nt

va
ri
ab
le

(c
at
eg
or
ic
al
or

co
nt
in
uo

us
)

Pa
pe
rs

ba
se
d

on
w
hi
ch

de
ci
si
on

ta
ke
n

Va
lu
es

of
fa
ul
td

at
as
et
ch
ar
ac
te
ri
st
ic
s
fo
r
w
hi
ch

gi
ve
n
te
ch
ni
qu

es
ar
e
ap

pr
op

ri
at
e

T
re
e
ba
se
d

(d
ec
is
io
n
tr
ee
,

C
4.
5
an
d
J4
8)

Y
es

Y
es

N
o

N
o

Y
es

Y
es

L
ar
ge

C
an

ha
nd
le

N
on
-l
in
ea
r

C
at
eg
or
ic
al

[2
2,
23

,2
6]

C
on

tin
uo

us
tr
ee

ba
se
d

Y
es

Y
es

N
o

N
o

Y
es

Y
es

L
ar
ge

C
an

ha
nd
le

N
on
-l
in
ea
r

C
on
tin

uo
us

[3
9]

Pe
rc
ep
tr
on

ba
se
d

(N
eu
ra
l

N
et
w
or
k)

Y
es

Y
es

Y
es

Y
es

N
o

N
o

Sm
al
l/l
ar
ge

Se
ns
iti
ve

N
on
-l
in
ea
r

B
ot
h

[2
3,
40

,4
1]

B
ac
k
pr
op
ag
at
io
n

ne
ur
al
ne
tw
or
k

ba
se
d

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

Sm
al
l/l
ar
ge

Se
ns
iti
ve

N
on
-l
in
ea
r

B
ot
h

[4
2]

Pr
ob
ab
ili
st
ic

N
eu
ra
lN

et
w
or
k

ba
se
d

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Sm
al
l/l
ar
ge

Se
ns
iti
ve

N
on
-l
in
ea
r

B
ot
h

[4
3]

E
vo
lu
tio

na
ry

ba
se
d
(g
en
et
ic

pr
og

ra
m
m
in
g)

Y
es

Y
es

N
o

N
o

Y
es

Y
es

Sm
al
l/l
ar
ge

C
an

ha
nd
le

D
on
’t
ca
re

B
ot
h

[2
4,
44

–4
7]

M
ul
ti
ob
je
ct
iv
e

ev
ol
ut
io
na
ry

ba
se

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

Sm
al
l/l
ar
ge

C
an

ha
nd

le
D
on

’t
ca
re

B
ot
h

[4
8]

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 265

Ta
bl
e
1

co
nt
in
ue
d

Te
ch
ni
qu
es
/

ch
ar
ac
te
ri
st
ic
s

N
oi
se

M
is
si
ng

va
lu
es

Im
ba
la
nc
ed

da
ta

H
ig
h
da
ta

di
m
en
si
on
al
ity

D
at
a

re
du

nd
an
cy

O
ut
lie

r
A
m
ou

nt
of

tr
ai
ni
ng

da
ta

re
qu

ir
es

H
et
er
og
en
ei
ty

of
da
ta

L
in
ea
ri
tie
s/

no
n-
lin

ea
ri
tie
s

D
ep
en
de
nt

va
ri
ab
le

(c
at
eg
or
ic
al
or

co
nt
in
uo

us
)

Pa
pe
rs

ba
se
d

on
w
hi
ch

de
ci
si
on

ta
ke
n

K
er
ne
lb

as
ed

(S
V
M
)

N
o

Y
es

Y
es

N
o

N
o

N
o

Sm
al
l

Se
ns
iti
ve

D
on
’t
ca
re

B
ot
h

[8
,4
9]

St
at
is
tic
al

m
et
ho

ds
(l
in
ea
r

re
gr
es
si
on

,
lo
gi
st
ic

re
gr
es
si
on

)

Y
es

Y
es

Y
es

Y
es

N
o

N
o

M
od
er
at
e/

la
rg
e

Se
ns
iti
ve

L
og
is
tic

ca
n

be
no

nl
in
ea
r

L
in
ea
r
ca
n

ha
nd

le
bo

th
lo
gi
st
ic

ha
nd

le
s

ca
te
go
ri
ca
l

[5
0–
52
]

B
ay
es
ia
n
N
et
w
or
k

(N
aï
ve

B
ay
es
)

Y
es

Y
es

N
o

Y
es

N
o

N
o

Sm
al
l

C
an

ha
nd
le

L
in
ea
r

C
at
eg
or
ic
al

[5
3,
54

]

E
ns
em

bl
e

cl
as
si
fie
rs

(R
an
do

m
Fo

re
st
,

B
ag
gi
ng

,e
tc
.)

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

L
ar
ge

C
an

ha
nd
le

D
on
’t
ca
re

B
ot
h

[1
0,
14

,2
5,

54
]

In
st
an
ce

ba
se
d

(K
N
N
,I
B
K
)

N
o

Y
es

Y
es

N
o

Y
es

N
o

Sm
al
l/l
ar
ge

Se
ns
iti
ve

N
on
-l
in
ea
r

B
ot
h

[4
5,
55

]

C
lu
st
er
in
g

Y
es

Y
es

N
o

Y
es

N
o

N
o

N
o
tr
ai
ni
ng

da
ta

re
qu

ir
es

Se
ns
iti
ve

D
on
’t
ca
re

N
ot

ap
pl
ic
ab
le

[2
6,
56

,5
7]

M
ul
ti-
ob
je
ct
iv
e

cl
us
te
ri
ng

Y
es

Y
es

N
o

Y
es

N
o

N
o

N
o
T
ra
in
in
g

da
ta

re
qu

ir
es

C
an

ha
nd

le
D
on

’t
ca
re

N
ot

ap
pl
ic
ab
le

[5
8,
59

]

123

www.manaraa.com

266 S. S. Rathore, S. Kumar

characteristic.While, entries marked = no indicate that corresponding classifier cannot
handle the presence of the particular characteristic. For example, in case of tree-
based classifiers, the presence of noise does not affect the classifier performance [23].
Therefore, it is marked as ‘yes’. While, for imbalanced data points, performance of
tree-based classifiers degrades, therefore, it is marked as ‘no’ [22]. The rules are
developed based upon this study. As it is clear from Table 1, the rules will be dealing
with all ten characteristics of the datasets. Out of these ten characteristics, eight can
have two possible values and remaining two can have three possible values. Initially,
we have designed 246 rules representing all the values of involved characteristics.
These are further used to train the decision tree. The motive to use decision tree is that
in some cases it is possible that values of all fault data characteristics are not available.
Since, decision tree has the capability of inferring the decision from the incomplete
knowledge also. Therefore, it helps in making recommendation of the fault prediction
techniques, even if partial domain information is available. It can be seen from the
Table 1 that for ten fault dataset characteristics, total possible number of cases are
2304. Therefore, performing the manual analysis and taking the manual decision can
be highly speculative. Using decision tree based recommendation system can be very
helpful in the selection of fault prediction techniques and also it reduces the work
of manual selection. Some of the sample rules are given in Table 2. Each rule is a
composition of all ten-fault dataset’s characteristics. The rationale underlying these
rules is also discussed.

Dataset characteristics corresponding to rule 1 specify that noise, outliers, data
redundancy, and missing values are present in the dataset. But, dataset does not have
imbalanced data points and does not have high dimension. Also, the given dataset
is heterogeneous. The learning function of the classifier is non-linear and dependent
variable is of categorical type. In this case, tree-based classifiers are best suited for
prediction [22,23,26]. If the dependent variable is of continuous type, but all other
characteristics are same as in rule 1 then, continuous tree based techniques are best
suited for prediction (rule 2) [39].

If amount of training data is small and learning function is of linear or non-linear, but
rest of the parameters are same as is rule 1, then according to rule 6, evolutionary based
classifiers are best suited for prediction [24,44,45]. However, these types of classifiers
are complex in nature and require higher efforts to optimize the classifier parameters. If
a situation occurs, where evolutionary based classifiers and tree based classifiers both
can be used, then choose tree based classifiers over evolutionary classifiers because it
requires lesser efforts for optimizing classifier parameters and for model building [22,
46,47]. If dataset has imbalanced data points, and all other parameter values are same
as in rule 6, then multi-objective evolutionary based classifiers are best suited for
prediction (rule 7) [48].

Rule 3 shows that noise is present in the dataset.Missing values and imbalanced data
points are also present in dataset. Dataset has high dimension. But, data redundancy
and outliers are not present in the dataset. Amount of training data requires is small.
Heterogeneous data is not present and learning function is non-linear. Dependent
variable is of categorical type. In this case, perceptron based classifiers are suited
for prediction [23,40,41]. If dataset has redundant values and all other parameters are
same as in rule 3, back propagation neural network is suited for prediction (rule 4) [42].

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 267

Table 2 Sample rules for recommendation system

1. If ((Noise==yes) ∧ (Missing value==yes)
∧(Imbalanced Data==no) ∧(High Data
Dimension==no) ∧(Data Redundancy==yes)
∧(Outlier==yes) ∧(Amount of Training
Data== large) ∧(Heterogeneous Data==yes)
∧(Function==non-linear) ∧(Dependent
Variable ==Categorical)) then Tree Based
classifiers

8. If ((Noise ==no) ∧(Missing value==yes)
∧(Imbalanced Data==yes) ∧ (High
Dat∧Dimension==no) ∧(Data
Redundancy==no) ∧ (Outlier==no) ∧
(Amount of Training Data==small) ∧
(Heterogeneous Data==no) ∧ (Function
==don’t care) ∧ (Dependent
Variable==Categorical)) then SVM

2. If ((Noise==yes) ∧ (Missing value==yes) ∧
(Imbalanced Data==no) ∧ (High Data
Dimension==no) ∧ (Dafa
Redundancy==yes) ∧ (Outlier==yes) ∧
(Amount of Training Data== large) ∧
(Heterogeneous Data==yes) ∧
(Function==non-linear) ∧ (Dependent
Variable ==Continuous)) then Continuous
Tree Based classifiers

9. If ((Noise==yes) ∧ (Missing value==yes) ∧
(Imbalanced Data==yes) ∧ (High Data
Dimension==yes) ∧ (Data Redundancy==no)
∧ (Outlier==no) ∧ (Amount of Training
Data==Moderate) ∧ (Heterogeneous
Data==no) ∧ (Function== linear) ∧
((Dependent Variable==Continuous)) then
Linear Regression

3. If ((Noise==yes) ∧ (Missing value==yes) ∧
(Imbalanced Data==yes) ∧ (High Data
Dimension==yes) ∧ (Data
Redundancy==no) ∧ (Outlier==no) A(
Amount of Training Data==small) ∧
(Heterogeneous Data==no) ∧
(Function==non-linear) ∧ (Dependent
Variable==Continuous)) then Perceptron
Based Techniques

10. If ((Noise==yes) ∧ (Missing value==yes)
∧ (Imbalanced Data==yes) ∧ (High Data
Dimension==yes) ∧ (Data Redundancy==no)
∧ (Outlier==no) ∧ (Amount of Training
Data==Moderate) ∧ (Heterogeneous
Data==no) ∧ (Function==non-linear) ∧
((Dependent Variable== Categorical)) then
Logistic Regression

4. If ((Noise==yes) ∧ (Missing value==yes) ∧
(Imbalanced Data==yes) ∧ (High Data
Dimension==yes) ∧ (Data
Redundancy==yes) ∧ (Outlier==no) ∧
(Amount of Training Data==small) ∧
(Heterogeneous Data==no) ∧
(Function==non-linear) ∧ (Dependent
Variable =Continuous))) then Back
Propagation Neural Network

11. If ((Noise==yes) ∧ (Missing value==yes)
∧ (Imbalanced Data==no) ∧ (High Data
Dimension==yes) ∧ (Data
Redundancy==no) ∧ (Outlier==no) ∧
(Amount of Training Data==small) ∧
(Heterogeneous Data==yes) ∧ (Data
Redundancy==no) ∧ (Function== linear) ∧
(Dependent Variable==Categorical)) then
Bayesian Classifiers

5. If ((Noise==yes) ∧ (Missing value==yes) ∧
(Imbalanced Data==yes) ∧ (High Data
Dimension==yes) ∧ (Data
Redundancy==yes) ∧ (Outlier==yes) ∧
(Amount of Training Data==small) ∧
(Heterogeneous Data==no) ∧
(Function==non-linear) ∧ (Dependent
Variable=Continuous))) then Probabilistic
Neural Network

12. If ((Noise ==no) ∧ (Missing value==yes)
∧ (Imbalanced Data==no) ∧ (High Data
Dimension==yes) ∧ (V Data
Redundancy==no) ∧ (Outlier==yes) ∧
(Amount of Training Data==Large) ∧
(Heterogeneous Data==no) ∧
(Function==don’t care) ∧ ((Dependent
Variable == Continuous))) then Ensemble
Classifiers

6. If ((Noise ==yes) ∧ (Missing value==yes) ∧
(Imbalanced Data==no) ∧ (High Data
Dimension==no) ∧ (Data Redundancy==yes)
∧ (Outlier==yes) ∧ (Amount of Training
Data==small) ∧ (Heterogeneous Data==yes)
∧ f Function==don’t care) A ((Dependent
Variable ==Categorical)) then Evolutionary
Based Techniques

13: If ((Noise ==no) ∧ (Missing value==yes) ∧
(Imbalanced Data==yes) ∧ (High Data
Dimension==no) ∧ (Data Redundancy==yes)
∧ (Outlier==no) ∧ (Amount of Training
Data==small) ∧ (Heterogeneous Data==no)
∧ (Function==non-linear) ((Dependent
Variable ==Categorical)) then Instance Based
Classifiers

123

www.manaraa.com

268 S. S. Rathore, S. Kumar

Table 2 continued

7. If ((Noise ==no) ∧ (Missing value==no) ∧
(Imbalanced Data==yes) ∧ (High Data
Dimension==no) ∧ (Data Redundancy==yes)
∧ (Outlier==yes) ∧ (Amount of Training
Data== large) ∧ (Heterogeneous Data==yes)
∧ (Function = =don’t care) ∧ ((Dependent
Variable ==Categorical)) then Multi-objective
Evolutionary Based Techniques

14: If ((Noise==yes) ∧ (Missing value==yes)
∧ (Imbalanced Data==no) ∧ (High Data
Dimension==yes) ∧ (Data
Redundancy==no) ∧ (Outlier==no) ∧
(Heterogeneous Data==no) ∧
(Function==non-linear)) then Clustering

15. If ((Noise==yes
Mjwe == “0y)∧ (Missing
value==yes) f ∧ (Data
Redundancy==no) ∧
(Outlier==no) ∧ (Heterogeneous
objective Clustering (Imbalanced
Data==no) ∧ (High Data
Dimension==yes) s Data==no) ∧
(Function==non-linear))then Multi

In the case, dataset has both redundant values and outliers, and all other parameters are
same as in rule 3, then probabilistic neural network is suited for prediction (rule 5) [43].

In rule 8 dataset has missing values and high dimension data. Noise is not present
in dataset. Learning function can be linear or non-linear and dependent variable is of
categorical type. Amount of training data requires is small and data redundancy is not
there. In this case, kernel based classifiers are best suited for prediction [8,49]. If data
redundancy is present and learning function is non-linear, but all other parameters are
same as in rule 8, then according to rule 13, instance based classifiers are suited for
prediction [45,56]. When dataset has noise, high data dimensionality, heterogeneous
data, and linear learning function, then according to rule 11, bayesian based classifiers
are best suited for prediction [53,54].

In Rule 9 noise is present in the dataset. Dataset has missing values and high
dimensional data. Amount of training data requires is moderate, learning function
is linear and dependent variable is continuous. Here, linear regression model is best
suited for prediction [51]. If learning function is non-linear and dependent variable is
categorical and all other parameters are same as in rule 9, the logistic regression is
best suited for prediction (rule 10) [50,52].

Rule 12 is for ensemble based classifiers. It is a most powerful classifier. Dataset
has noise, imbalanced data points, missing values, outlier, heterogeneous and high
dimensional data, the dependent variable is continuous type. Amount of training data
requires is large. In such case, ensemble based classifiers are best suited for predic-
tion [10,14,25,55].

Rule 14 shows that no training data is available for building the prediction model.
Dataset has noise, missing value, and high dimensionality, but outlier values and
imbalanced data points are not present in the dataset. In such scenario, clustering
based unsupervised techniques are best suited for prediction [26,57,59]. If dataset has
heterogeneity and all other values are same as in rule 14. Multi-objective clustering is
best suited for prediction (rule 15) [58,63].

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 269

4.2.2.2 Developing decision tree The decision rules designed and discussed in Sect.
4.2.2.1 are further used to develop the decision tree. We used J48 classifier to design
and develop our recommendation system. J48 classifier is an open source Java imple-
mentation of the C4.5 algorithm in the weka data-mining tool [64]. C4.5 is a decision
tree based algorithm and is an extension of ID3 algorithm [22]. It uses a tree based
non-parametric supervised learning method for classification. It creates a tree type of
structure that predicts the value of a target variable, by learning simple decision rules
inferred from the data features (attributes). The feature that best splits the training data
would be the root node of the tree. The same process is then repeated for each partition
of the divided data, creating sub-trees until the training data is not classified into one of
the given class [22]. To select a feature that best classify the given examples, generally
some statistical methods are used. The most commonly used method is based upon
the information gain. It is used to measure how well a feature is separating the given
set of examples. It is defined as follows [65],

Gain(S, A) = Entropy(S) −
∑

vεValues(A)

|Sv|
|S| Entropy(Sv) (1)

Where, Values(A) is the set of all possible values for attribute A, and Sv is the subset
of S for which attribute A has value v (i.e., Sv = {sεS|A(s) = v}). S is the set of all
training examples.

Entropy is calculated as,

Entropy(S) =
c∑

n=1

−pi log2 pi (2)

where pi is the proportion of S belonging to class i.
At each step, it searches for complete hypothesis space and calculate the information

gain of all the remaining features to select a candidate feature while growing the tree.
Figure 3 shows the generated decision tree. The mapping of abbreviations used in

the decision tree to corresponding names is given in Table 3. In the generated decision
tree, ATDR (amount of training data required) is serving as the root node. The input
set of examples is classified into four classes based on the four values of ATDR. Class
is further classified into subclasses in the similar way. The path from root node to leaf
node shows a branch of the tree. The value attached to a leaf node represents the clas-
sification performance of the particular branch. For example, value (50.0/4.0) reveals
that this branch of the tree classifies four instances incorrectly out of 50 seen instances.

To support the concept and architecture of the presented recommendation system,
we have developed a prototype of the presented recommendation system. The proto-
type has been implemented using the Java programming language. The system asks
questions to the users regarding the parameter values of fault data characteristics in a
GUI interface. User can select any one of the possible value and then system automat-
ically suggests the best-suited fault prediction technique for building fault prediction
model.

123

www.manaraa.com

270 S. S. Rathore, S. Kumar

Fig. 3 Generated decision tree for techniques selection

Table 3 Mapping of the abbreviated names

Characteristics name Techniques name

ATDR = amount of training data required TB = tree based classifiers

LONL = linear or non-linear PB = perceptron based classifiers

HDD = high data dimension IB = instance based classifiers

DH = heterogeneous data EC = ensemble classifiers

DR = data redundancy EB = evolutionary based classifiers

DV = dependent variable KB = kernel based classifiers

ID = imbalanced data BN = Bayesian Network

MV = missing value LogR = logistic regression

NL = non-linear SM = statistical methods

DNC = dont care

5 Experimental setup

The goal of this experimental study is to evaluate the performance of the presented
decision tree logic based recommendation system. The details of the experiments are
given in the coming subsections.

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 271

Table 4 Detail of the dataset
Dataset information

Number of examples 246

Number of features 10

Number of classes in dependent variable 11

Type of dependent variable Categorical

5.1 Detail of the dataset

To evaluate the presented recommendation system, we have created experimental
dataset based on the information given in Table 1. The base of the experimental dataset
lies in the thirty-three papers (referred in the Table 1) used for the formation of the
rules for the selection of fault prediction techniques. Based on the results reported in
these papers, the suitability of the different fault prediction techniques for the different
values of fault datasets characteristics has been established. The dependent variable
in our analysis is the fault prediction techniques (Sect. 3). The independent variables
(features) are the ten characteristics of the fault datasets that we have considered in
our study. The detail of the experimental dataset is given in Table 4.

The descriptive statistic of the dataset is given in Table 5. Table 5a is showing the
frequency distribution of independent variables. Table presents possible class values
with their occurrences for each of the characteristic considered for the fault dataset.
First columnof the table shows the possible class values for each characteristic. Second
column shows the frequency of occurrence of each characteristic in the experimen-
tal dataset. Last column shows the percentage of the dataset instances in which the
corresponding class value occurs. Table 5b is showing the frequency distribution of
dependent variable. Table describes the frequency of occurrences of different fault pre-
diction techniques considered in the study and the percentage of the dataset instances
in which the corresponding techniques occurs.

5.2 Evaluation

In their work, Marcos et al. [62] have presented some measures to evaluate the rule-
based systems. They have used majority error and error rate measures to evaluate the
system. In another study, Mieczyslaw et al. [66] have used completeness, consistency,
adequacy and reliability methods to validate the rule-based system. Encouraged from
these above studies, we have used following evaluation parameters, as given in Table
6:

We have performed two sets of experiments to evaluate the performance and effec-
tiveness of the recommendation system. They are given below:

Experiment 1 To measure the error rates and overall accuracy, using 10-fold cross
validation approach.

In the first set of experiments, we use 10-fold cross validation scheme and evaluate
the model. Cross validation scheme randomly divides the data into the ten parts. Nine

123

www.manaraa.com

272 S. S. Rathore, S. Kumar

Table 5 Frequency distribution tables for the experimental dataset

Class values Frequency Percent ratio Class values Frequency Percent ratio

(a) Table for independent variables

Noise Missing value

No 135 54.9 No 127 51.6

Yes 111 45.1 Yes 119 48.4

Imbalanced data High data dimensional

No 155 63.0 No 176 71.5

Yes 91 37.0 Yes 70 28.5

Data redundancy Outlier

No 171 69.5 No 181 73.6

Yes 75 30.5 Yes 65 26.4

Amount of training data required Linear or non-linear

Large 147 59.8 DNC 74 30.1

Moderate 13 5.3 Lin 91 37.0

No 13 5.3 NL 81 32.9

Small 73 29.7

Heterogeneous data Dependent variable

No 165 67.1 No 153 62.2

Yes 81 32.9 Yes 93 37.8

Techniques Frequency Percent ratio

(b) Table for dependent variable

BN 13 5.3

Clustering 13 5.3

EB 50 20.3

EC 50 20.3

IB 16 6.5

KB 14 5.7

LogR 8 3.2

LR 11 4.48

PB 33 13.4

SM 14 5.7

TB 24 9.8

Total 246 100

parts are used to train the model and rest one part is used for testing the model. This
process is repeated for 10 times and then results are averaged over the rounds.

Experiment 2 To measure the error rates and overall accuracy, using separate training
and testing data.

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 273

Table 6 Performance measures

Performance measures Definition

MAE and RMSE MAE and RMSE measure the magnitude of the error in a set of
prediction [67]

Accuracy (TN+TP)/(TN+TP+FN+FP) [1]

Precision TP/(TP+FP) [1]

Recall TP/(TP+FN) [1]

False positive rate FP/(TN+FP) [1]

F-measure 2 (precision* recall)/(precision+ recall) [1]

ROC It visualizes a trade-off between the correctly predicted faulty modules
to the incorrectly predicted non-faulty modules [16]

TP true positive, TN true negative, FP false positive, FN false negative

Table 7 Results of the experiment

Parameters 10-fold cross validation Separate testing data

Mean absolute error (MAE) 0.0393 0.0464

Root mean squared error (RMSE) 0.1555 0.164

Accuracy 84.84% 84.20%

False positive rate 2.5% 2.8%

Precision 83.4% 81%

Recall 84.8% 84.3%

F-measure 84% 82.40%

ROC value 95.40% 95.90%

In the second set of experiment, we use separate training and testing scheme. We
randomly partition data in 30–70 ratios. 70% of the data is used for training the model
and remaining 30% of the data is used for testing purpose. We use RemovePercentage
filter available in weka data mining tool to partition the training and testing data.

The results of the above said experiments are given in Table 7. Table shows the
results of the various evaluation parameters discussed above. For 10-fold cross vali-
dation, the accuracy value is 84.8% with the 84 and 95.4% of f-measure and ROC
values respectively. The MAE value is 0.039, RMSE value is 0.155 and the false posi-
tive rate is 2.5%. This shows that generated recommendation system has achieved high
accuracy with lower misclassification errors. In Addition, higher value of ROC curve
proving the effectiveness of the recommendation system. In second set of experiments,
the proposed recommendation system has achieved an accuracy of 84.2%, f-measure
of 82.4 and 95.9% of ROC curve value. The error rate is 0.0464 (MAE) and 0.164
(RMSE). The false positive rate is 2.8%. The results of separate training and testing
data scheme are comparable to the 10-fold cross validation results. These resulting
statistics confirmed the effectiveness and reliability of the proposed recommendation
system.

123

www.manaraa.com

274 S. S. Rathore, S. Kumar

Ta
bl
e
8

C
as
e
st
ud
ie
s

C
as
e

st
ud

y
R
ep
or
te
d

w
or
ks

A
im

of
st
ud
y

U
se
d
da
ta
se
ts

Te
ch
ni
qu
es

us
ed

C
on
si
de
re
d
fa
ul
td

at
a

ch
ar
ac
te
ri
st
ic
s

Te
ch
ni
qu

es
re
co
m
m
en
de
d
by

ex
pe
ri
m
en
ta
ls
tu
dy

Te
ch
ni
qu

e
re
co
m
m
en
de
d
by

ou
r

pr
op

os
ed

re
co
m
m
en
da
tio

n
sy
st
em

1.
C
at
al
et
al
.

[1
1]

In
ve
st
ig
at
in
g
th
e

ef
fe
ct
of

da
ta
se
t

si
ze
,m

et
ri
cs

se
ts
,

an
d
fe
at
ur
e
se
le
ct
io
n

te
ch
ni
qu

es
on

so
ft
w
ar
e
fa
ul
t

pr
ed
ic
tio

n

K
C
1,
K
C
2,

PC
1,

C
M
1
an
d
JM

1
R
an
do

m
Fo

re
st
,N

ai
ve

B
ay
es
,I
m
m
un

os
1,

Im
m
un

os
2,

C
L
O
N
A
L
G
,A

IR
S1

,
A
IR

S2
,a
nd

A
IR

S2

N
oi
sy

da
ta
,t
w
o
tr
ai
ni
ng

da
ta
se
ts
ar
e
la
rg
e
an
d

th
re
e
ar
e
of

sm
al
ls
iz
e,

hi
gh

di
m
en
si
on

da
ta
,

bi
na
ry

de
pe
nd

en
t

va
ri
ab
le
an
d

im
ba
la
nc
ed

da
ta

JM
1
an
d
K
C
1:

R
an
do

m
Fo

re
st
(a
n

E
ns
em

bl
e
ba
se
d

cl
as
si
fie
r)
,P

C
1,

C
M
1
an
d
K
C
2:

N
ai
ve

B
ay
es

(B
ay
es
ia
n
ba
se

cl
as
si
fie
r)

Fo
r
JM

1
A
nd

K
C
1:

E
ns
em

bl
e
ba
se
d

cl
as
si
fie
rs
or

pe
rc
ep
tr
on

ba
se
d

cl
as
si
fie
rs
.P

C
1,

C
M
1
an
d
K
C
2:

B
ay
es
ia
n
N
et
w
or
k

or
ev
ol
ut
io
na
ry

ba
se
d
cl
as
si
fie
rs

2.
Fe

iX
in
g
et

al
.[
49

]
In
ve
st
ig
at
e
th
e

ef
fe
ct
iv
en
es
s
of

SV
M

cl
as
si
fie
r
fo
r

fa
ul
tp

ro
ne
ne
ss

M
ed
ic
al

im
ag
in
g

sy
st
em

SV
M
,d

is
cr
im

in
an
t

an
al
ys
is
,c
la
ss
ifi
ca
tio

n
tr
ee
,B

ay
es
ia
n
N
et
w
or
k

Sm
al
la
m
ou

nt
of

tr
ai
ni
ng

da
ta
,

no
n-
lin

er
le
ar
ni
ng

fu
nc
tio

n,
bi
na
ry

de
pe
nd

en
tv
ar
ia
bl
e,
no

hi
gh

di
m
en
si
on

al
da
ta

SV
M

(k
er
ne
lb

as
ed

cl
as
si
fie
r)

K
er
ne
lb

as
ed

cl
as
si
fie
rs
or

ev
ol
ut
io
na
ry

ba
se
d

cl
as
si
fie
rs

3.
A
ri
sh
o
lm

et
al
.[
68

]
C
om

pa
ri
so
n
of

m
an
y

m
ac
hi
ne

le
ar
ni
ng

te
ch
ni
qu

es

A
la
rg
e
Ja
va

le
ga
cy

sy
st
em

C
4.
5,

PA
R
T,

lo
gi
st
ic

re
gr
es
si
on

,R
IP
PE

R
,

ba
ck

pr
op
ag
at
io
n
N
N

an
d
SV

M

L
ar
ge

am
ou

nt
of

tr
ai
ni
ng

da
ta
,b

in
ar
y

de
pe
nd

en
tv

ar
ia
bl
e,

Im
ba
la
nc
ed

da
ta

C
4.
5
(t
re
e
ba
se
d

cl
as
si
fie
r)
an
d

N
eu
ra
lN

et
w
or
k

(p
er
ce
pt
ro
n
ba
se
d

cl
as
si
fie
r)

T
re
e
B
as
ed

C
la
ss
ifi
er

an
d
Pe
rc
ep
tr
on

B
as
ed

C
la
ss
ifi
er

4.
E
lis
h
et
al
.

[6
9]

D
ef
ec
tp

re
di
ct
io
n

us
in
g
su
pp

or
ts
ec
to
r

m
ac
hi
ne

C
M
1,

PC
1,
K
C
1

an
d
K
C
3

SV
M
,l
og
is
tic

re
gr
es
si
on
,

K
N
N
,M

ul
ti-
la
ye
r

pe
rc
ep
tr
on
s,
B
ay
es
ia
n

B
el
ie
f
N
et
w
or
k,

N
ai
ve

B
ay
es
,R

an
do
m

Fo
re
st

an
d
de
ci
si
on

tr
ee

Sm
al
la
m
ou

nt
of

tr
ai
ni
ng

da
ta
,b

in
ar
y

de
pe
nd

en
tv

ar
ia
bl
e,

im
ba
la
nc
ed

da
ta
,

no
n-
lin

ea
r
le
ar
ni
ng

fu
nc
tio

n

SV
M

(k
er
ne
lb

as
ed

cl
as
si
fie
r)

K
er
ne
lb

as
ed

cl
as
si
fie
rs

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 275

Ta
bl
e
8

co
nt
in
ue
d

C
as
e

st
ud

y
R
ep
or
te
d

w
or
ks

A
im

of
st
ud
y

U
se
d
da
ta
se
ts

Te
ch
ni
qu
es

us
ed

C
on
si
de
re
d
fa
ul
td

at
a

ch
ar
ac
te
ri
st
ic
s

Te
ch
ni
qu

es
re
co
m
m
en
de
d
by

ex
pe
ri
m
en
ta
ls
tu
dy

Te
ch
ni
qu

e
re
co
m
m
en
de
d
by

ou
r

pr
op

os
ed

re
co
m
m
en
da
tio

n
sy
st
em

5.
K
ho

sh
go

ft
aa
r

et
al
.[
67
]

Fa
ul
tp

re
di
ct
io
n
us
in
g

tr
ee

ba
se
d

ap
pr
oa
ch
es

A
te
le
co
m
m
un
i-

ca
tio

n
sy
st
em

C
ar
t-
ls
,S
-p
lu
s,
an
d

C
ar
t-
la
d

L
ar
ge

am
ou

nt
of

tr
ai
ni
ng

da
ta
,O

ut
lie
r,

bi
na
ry

de
pe
nd

en
t

va
ri
ab
le
,I
m
ba
la
nc
ed

da
ta

C
ar
t-
L
S
an
d
S-
pl
us

(T
re
e
ba
se
d

cl
as
si
fie
rs
)

T
re
e
B
as
ed

C
la
ss
ifi
er
s

or
Pe

rc
ep
tr
on

B
as
ed

cl
as
si
fie
r
or

E
ns
em

bl
e
B
as
ed

cl
as
si
fie
rs

6.
St
ef
an

et
al
.

[1
5]

B
en
ch
m
ar
ki
ng

cl
as
si
fic
at
io
n

m
od

el
s
fo
r
so
ft
w
ar
e

de
fe
ct
pr
ed
ic
tio

n

C
M
1,

K
C
1,

K
C
3,

K
C
4,

M
W
1,

JM
1,

PC
1,

PC
2,

PC
3
an
d
PC

4

22
cl
as
si
fic
at
io
n

al
go

ri
th
m
s
gr
ou

pe
d
in
to

5
ca
te
go
ri
es
:s
ta
tis
tic
al

cl
as
si
fie
rs
,N

ea
re
st

N
ei
gh

bo
r,
Su

pp
or
t

V
ec
to
r
M
ac
hi
ne
,

tr
ee
-b
as
ed

cl
as
si
fie
rs

an
d
E
ns
em

bl
e

cl
as
si
fie
rs

N
oi
sy

da
ta
,fi

ve
da
ta
se
ts

of
la
rg
e
si
ze
,o

ne
da
ta
se
to

f
m
od
er
at
e

si
ze

an
d
tw
o
da
ta
se
ts

of
sm

al
ls
iz
e,
hi
gh

di
m
en
si
on
al
da
ta
,

bi
na
ry

de
pe
nd

en
t

va
ri
ab
le
an
d

im
ba
la
nc
ed

da
ta

Fo
r
K
C
1:

St
at
is
tic
al

C
la
ss
ifi
er
s,

E
ns
em

bl
e

C
la
ss
ifi
er
s.
Fo

r
PC

1,
PC

2:
N
eu
ra
l

N
et
w
or
k
Fo

r
M
W
1:

st
at
is
tic
al
an
d

E
ns
em

bl
e.
Fo

r
JM

1:
E
ns
em

bl
e
cl
as
si
fie
r.

Fo
r
PC

3:
SV

M
.F

or
PC

4:
E
ns
em

bl
e

cl
as
si
fie
r

Fo
r
K
C
1:

E
ns
em

bl
e

C
la
ss
ifi
er
s.
Fo

r
JM

1:
E
ns
em

bl
e

C
la
ss
ifi
er

or
ev
ol
ut
io
na
ry

cl
as
si
fie
r.
Fo

r
PC

1:
st
at
is
tic
al
.F

or
PC

2:
pe
rc
ep
tr
on

ba
se
d
or

E
ns
em

bl
e
cl
as
si
fie
r.

Fo
r
PC

3:
st
at
is
tic
al

or
E
ns
em

bl
e

cl
as
si
fie
r
.F

or
PC

4:
st
at
is
tic
al
or

E
ns
em

bl
e
cl
as
si
fie
r

Fo
r
M
W
1:

pe
rc
ep
tr
on

or
in
st
an
ce

ba
se
d

cl
as
si
fie
rs

123

www.manaraa.com

276 S. S. Rathore, S. Kumar

Ta
bl
e
8

co
nt
in
ue
d

C
as
e

st
ud

y
R
ep
or
te
d

w
or
ks

A
im

of
st
ud
y

U
se
d
da
ta
se
ts

Te
ch
ni
qu
es

us
ed

C
on
si
de
re
d
fa
ul
td

at
a

ch
ar
ac
te
ri
st
ic
s

Te
ch
ni
qu

es
re
co
m
m
en
de
d
by

ex
pe
ri
m
en
ta
ls
tu
dy

Te
ch
ni
qu

e
re
co
m
m
en
de
d
by

ou
r

pr
op

os
ed

re
co
m
m
en
da
tio

n
sy
st
em

7.
M
a
et
al
.[
61
]

Pr
ov
id
in
g
a
st
at
is
tic
al

fr
am

ew
or
k
fo
r
th
e

pr
ed
ic
tio

n
of

fa
ul
t-
pr
on

en
es
s

K
C
1,
K
C
2,
JM

1,
PC

1,
C
M
1

L
og
is
tic

re
gr
es
si
on
,

di
sc
ri
m
in
an
ta
na
ly
si
s,

cl
as
si
fic
at
io
n
tr
ee
,

bo
os
tin

g,
J4
8,

IB
K
,

N
aï
ve

B
ay
es
,R

ul
eS
et
,

V
F1

an
d
R
an
do
m

Fo
re
st
,K

er
ne
lD

en
si
ty
,

V
ot
ed

Pe
rc
ep
tr
on
,

H
yp
er

Pi
pe
s,
D
ec
is
io
n

St
um

p,
K
st
ar
,R

oc
ky

N
oi
sy
,t
w
o
da
ta
se
ts
of

la
rg
e
si
ze
,o

ne
of

m
od

er
at
e
si
ze

an
d
on

e
of

sm
al
ls
iz
e,
hi
gh

di
m
en
si
on
al
da
ta
,

bi
na
ry

de
pe
nd

en
t

va
ri
ab
le
an
d

im
ba
la
nc
ed

da
ta

JM
1,
PC

1,
K
C
1,
K
C
2:

R
an
do

m
Fo

re
st

(E
ns
em

bl
e
ba
se
d

cl
as
si
fie
r)
.C

M
1:

lo
gi
st
ic
re
gr
es
si
on

(s
ta
tis
tic
al
m
et
ho
d)

JM
1:

E
ns
em

bl
e

cl
as
si
fie
r
or

E
vo
lu
tio

na
ry

C
la
ss
ifi
er
.C

M
1:

pe
rc
ep
tr
on

cl
as
si
fie
r.
PC

1:
st
at
is
tic
al
m
et
ho
d.

K
C
1
an
d
K
C
2:

E
ns
em

bl
e
cl
as
si
fie
r

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 277

6 Case study

In this section, we present some case studies to establish the applicability of the pro-
posed recommendation system.Wehave applied the proposed recommendation system
on the datasets used in some recent experimental studies related to the comparison of
fault prediction techniques and compared the recommendations of the proposed rec-
ommendation system with the results from the corresponding experimental studies.
We have performed extensive study and considered only those studies that are compar-
ing more than one fault prediction techniques. Studies considering only one technique
for analysis were not considered. We observed that some of the information about
the datasets has not been explicitly reported in the paper by the authors. So, we have
consulted the corresponding sources and gathered the information about the dataset
characteristics from there. Since, some of the authors used commercial or proprietary
datasets; therefore, it is not possible to scrutinize those datasets. Hence, for these types
of datasets, we have considered only those characteristics that were listed explicitly
by the authors. These characteristics were used to get recommendations regarding the
most appropriate fault prediction technique using the developed decision tree. The
details of all the case studies are available in the form of supplementary material. The
summarized results of the case studies are given in Table 8. Table 8 summarizes the
experimental studies comparing various fault prediction techniques on some given
datasets and shows the recommendations made by these works after experimental
analysis regarding software fault prediction technique to use for a given dataset. We
have used the same datasets for making recommendations as used by these works in
their experimental investigations and have used these recommendations as the baseline
results to validate the recommendations suggested by our presented system.

For each of the case study, the inputs to the recommendation system are the values
of the dataset characteristics. Next, recommendation system processes the input values
based on the information stored in the generated decision tree. Afterwards, it suggests
the best possible fault prediction technique for the given dataset.

• Case Study 1 (Catal et al. [11]): In this work, the results of the used fault pre-
diction techniques have been evaluated using AUC and accuracy parameters. The
Random Forest technique performed best for with AUC values between 0.79 and
0.84 and accuracy value between 85 and 93%, respectively. While, the Immunos2
technique performed worst with AUC values between 0.50 and 0.70 and accuracy
value between 51 and 72%, respectively. This study found that with the datasets
that are imbalanced, have noise, are with the dependent variable of binary type,
have high dimensional data, and are large in size, the Random Forest classifier
produced the best results. Our recommendation system also suggests the use of
Ensemble based classifiers or Perceptron based classifiers in these cases. For the
small dataset having noise, with binary dependent variable, high data dimensions
and imbalanced data, Naive Bayes classifier produced the best results. Our recom-
mendation system also suggests the use of Bayesian based classifiers or Evaluation
classifiers. The recommendations are in line with the results found by this reported
study.

123

www.manaraa.com

278 S. S. Rathore, S. Kumar

• Case Study 2 (Fei et al. [49]): In this work, the results of the fault prediction
techniques have been evaluated using type-I and type-II error rate measures. The
SVM technique performed best with type-I error of 2.3% and type-II error of
6.4%, respectively. Classification Tree technique performed worst with the type-I
error of 9.5% and type-II error of 8.8%, respectively. The results of the study
found that SVM classifier based fault prediction model produced the best result.
Our recommendation system also suggests the use of kernel based classifier (SVM)
or Evaluation based classifier in theses case, which is in alignment to the results
reported by this study.

• Case Study 3 (Erik et al. [68]): In this work, the results of the experiments have
been evaluated using accuracy, precision, and recall measures. The C4.5 classifier
performed best with the accuracy values between 86 and 97%, precision values
between 0.07 and 0.42, and recall values between 0.22 and 0.83, respectively.
Whereas, the PART classifier performed worst with the accuracy values between
77 and 96%, precision values between 0.04 and 0.148, and recall values between
0.505 and 0.775, respectively. This study found that for the dataset of large size,
with dependent variable of binary type and balanced data type, C 4.5 classifier
produced best result. Our recommendation system also suggests the use of Tree
based classifier in this case. For large size dataset with binary dependent variable
and imbalanced fault data, the Neural Network produced the best results. Our
recommendation system also suggests the use of Perceptron based classifier for
this case.

• Case Study 4 (Elish et al. [69]): In this work, the results of the experiments have
been evaluated using accuracy, precision, recall and f-measure parameters. The
SVM classifier performed best with the accuracy value of 90%, precision value
of 0.94, recall value of 0.99, and f-measure value of 0.95, respectively. While, the
Bayesian Network performed worst with the accuracy value of 83%, precision
value of 0.90, recall value of 0.92, and f-measure value of 0.85, respectively. The
results of this study indicated that the performance of SVM classifier is better
than other considered fault prediction techniques for all the used datasets. Our
recommendation system also recommends the use of similar type of classifier for
building fault prediction model.

• Case Study 5 (Khoshgoftaar et al. [67]): In this work, average absolute error
(AAE) and average relative error (ARE) have been used to evaluate the perfor-
mance of the fault prediction techniques. Cart-lad technique performed best with
the AAE value of 1.13 and ARE value of 0.39, respectively. Whereas, Cart-ls per-
formed worst with the AAE value of 1.28 and ARE value of 0.68, respectively.
The results of the study found that Cart-ls based fault prediction models produced
the best results. Our recommendation system also suggests the use of Tree based
classifier or Perceptron based classifier in these cases. The recommendations are
in line with the results found in this study.

• Case Study 6 (Stefan et al. [15]): In this work, AUC measure is used to evaluate
the results of fault prediction. The results found that Random Forest performed
best with the AUC value of 0.97 and Radical Basis Function Network performed
worst with the AUC value of 0.60, respectively over various datasets. The results
found that statistical techniques performed best for KC1 and MW1 data. Neural

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 279

network performed best for PC1 and PC2. SVMperformed best for KC3, CM1 and
PC3 and Ensemble classifiers performed best for KC1, KC4, MW1, PC4 and JM1
data. The fault prediction techniques suggested by our recommendation system
are also in line with the results reported by this study.

• Case Study 7 (Yan Ma et al. [61]): In this work, the results of the considered
techniques have been evaluated using several confusion matrix parameters. The
Random Forest performed best with the accuracy value of 85%, precision value of
0.40, recall value of 0.50 and the f-measure value of 0.48, respectively. While, the
Voted Perceptron performed worst with the accuracy of 56%, precision value of
0.24, recall value of 0.33 and, f-measure value of 0.24, respectively. The results of
this study found thatRandomforest has performedbetter compared to all other used
techniques for almost all the used datasets, except for CM1 data, where Logistic
Regression produced the best results. Our recommendation system also suggests
the use of ensemble based and statistical classifiers for most of the datasets, which
is in line with the results found in this study.

From Table 8, it is clear that the recommendations made by our proposed recom-
mendation system regarding the selection of fault prediction techniques are in linewith
the results reported by the authors. This confirmed the effectiveness of our proposed
recommendation system. We are able to recommend the best-suited fault prediction
technique accurately without performing any experimental study. From the analysis
of these works, we found that using best fault prediction techniques increases the val-
ues of precision and recall by 20–25% (approx.) compared to that of using any other
relatively poorly performing fault prediction techniques.

From these case studies, it was observed that for the large datasets such as JM1, PC1,
andKC1ensemble-based classifiers performed relativelywell. The reason of this is that
ensemble methods generally require large and diverse dataset to train themselves [9].
For the small datasets such as PC1, Naive Bayes performed relatively well. The reason
of this is that Naive Bayes assumes that the value of a particular feature is independent
of the value of any other feature, given the class variable and it requires a small amount
of training data to estimate the parameters necessary for classification [17]. It is also
observed from these case studies that all the classifiers handled missing values from
the dataset efficiently.

7 Comparative evaluation

In this section, we present a comparative evaluation of the proposed recommendation
system. To the best of our knowledge, nowork in the literature has been reported on the
development of recommendation system for the selection of software fault prediction
technique in a given environment. Some of the works such as these [11,12,15,61,70–
72],whohavepresented an experimental analysis of various fault prediction techniques
over several software fault datasets and some concluding remarks on the suitability of
fault prediction techniques are available. Table 9 presents the comparative analysis of
the proposed recommendation system with these works.

Catal et al. [11] performed a study to investigate the effect of dataset size, metric set,
and the feature selection techniques on software fault prediction. Additionally, they

123

www.manaraa.com

280 S. S. Rathore, S. Kumar

Ta
bl
e
9

Su
m
m
ar
y
of

th
e
co
m
pa
ra
tiv

e
an
al
ys
is

Fa
ct
or
s
co
ns
id
er
ed

[1
1]

[1
5]

[1
2]

[6
1]

[7
0]

[7
1]

[7
2]

Pr
op

os
ed

re
co
m
m
en
da
tio

n
sy
st
em

N
oi
se

Y
es

N
o

N
o

N
o

Y
es

N
o

Y
es

Y
es

M
is
si
ng

V
al
ue
s

N
o

N
o

N
o

Y
es

Y
es

N
o

N
o

Y
es

O
ut
lie
r

Y
es

N
o

Y
es

N
o

N
o

N
o

N
o

Y
es

H
D
D

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

H
et
er
og
en
ei
ty

of
D
at
a

N
o

N
o

Y
es

N
o

N
o

N
o

Y
es

Y
es

A
T
D
R

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

D
at
a
R
ed
un
da
nc
y

N
o

N
o

Y
es

N
o

N
o

Y
es

Y
es

Y
es

Im
ba
la
nc
ed

D
at
a

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

N
o

Y
es

L
ea
rn
in
g
Fu

nc
tio

n
N
o

N
o

N
o

N
o

N
o

Y
es

Y
es

Y
es

D
ep
en
de
nt

V
ar
ia
bl
e

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

C
la
ss
ifi
ca
tio

n
of

fa
ul
t

pr
ed
ic
tio

n
te
ch
ni
qu

es

N
o

Y
es

N
o

N
o

Y
es
,b
ut

lim
ite
d

Y
es

Y
es
,b
ut

lim
ite
d

Y
es

Pr
ov
id
in
g
su
gg

es
tio

ns
fo
r
th
e
se
le
ct
io
n
of

fa
ul
tp

re
di
ct
io
n

te
ch
ni
qu

es

Y
es
,b
ut

lim
ite
d

Y
es
,b
ut

lim
ite
d

Y
es

Y
es
,b
ut

lim
ite
d

Y
es
,b
ut

lim
ite
d

Y
es
,b
ut

lim
ite
d

Y
es
,b
ut

lim
ite
d

Y
es

Fo
rm

al
ru
le
s
fo
r

ef
fe
ct
iv
e
de
ci
si
on

m
ak
in
g

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

D
es
ig
n
of

re
co
m
m
en
da
tio

n
sy
st
em

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 281

have evaluated nine classification algorithms for software fault prediction over five
NASA datasets using various software metrics. The study considered only a limited
number of fault dataset characteristics. Some important characteristics such asmissing
values, heterogeneity in the dataset, etc. have not been considered. Further, no discus-
sion on the development of formal rules for the selection of software fault prediction
technique can be found. Lessmann et al. [15] presented a framework for comparative
analysis of several software fault prediction techniques. The comparative study has
been performed over ten NASA datasets using twenty-two classifiers. Further, some
suggestions regarding the selection of fault prediction techniques have been provided.
The presented framework considered only few characteristics of fault dataset such
as size of dataset, presence of noise and imbalance dataset. Many important char-
acteristics affecting the selection of fault prediction technique have not considered.
Furthermore, no recommendation system has been provided. Venkata et al. [12] eval-
uated different fault prediction techniques over four different software fault datasets.
This work discussed some of the fault dataset characteristics such as multicollinearity,
number of features (softwaremetrics) in the dataset, and size of fault dataset. However,
no discussion about the development of formal rules or recommendation system for the
selection of fault prediction techniques can be found. Ma et al. [61] proposed a frame-
work for software fault prediction using modified random forest algorithm. This study
also compared the performance of presented modified random forest algorithm with
several other software fault prediction techniques. This study primarily focused on
evaluating the performance of different fault prediction algorithms. A little discussion
has been found regarding the fault dataset characteristics. However, no taxonomical
classification of fault prediction techniques or any type of recommendation system
has been provided.

Hall et al. [70] presented a review on fault prediction performance in software engi-
neering. The study primarily focused on investigating the influence of various factors
on software fault prediction performance. A little discussion has been provided regard-
ing the selection of fault prediction techniques for the given fault dataset. However,
no description on the formal rules for the selection of fault prediction techniques or
any recommendation system has been presented. Shihab [71] provided the details of
the various factors related to software fault prediction (SFP) and presented a review
of the works on SFP. In addition, a classification of the fault prediction techniques
is presented. The study provided a little discussion of fault dataset characteristics.
However, no detail about the formal rules or recommendation system that can be used
for the selection of software fault prediction technique can be found. Nam [72] pre-
sented a survey of the works related to software defect prediction (SDP). The work
discussed some characteristics of fault dataset such as dependent variable, noise, high
data dimensionality and others. Many other important characteristics that influenced
the selection of fault prediction techniques have not been considered. Further, no
recommendation system has been provided.

123

www.manaraa.com

282 S. S. Rathore, S. Kumar

8 Conclusions

In this paper,we present a decision tree logic based recommendation system that assists
in the selection of a suitable technique to build fault prediction model. Here, initially
we have presented a classification of the fault prediction techniques. Next, we have
identified ten characteristics of the fault dataset that mostly influences the performance
of the classification techniques used in the fault prediction. Then, an extensive study
and analysis was performed to determine the influence of the selected fault-dataset
characteristics on the suitability of the various classification techniques for fault pre-
diction. This study was used to devise the rules and further for the development of
a decision tree that takes values of dataset characteristics as input and generates the
recommendations on the suitable fault prediction classifiers to be used for the given
dataset. We have presented some case studies to confirm the usability and the effec-
tiveness of the proposed recommendation system. The work has been compared with
the existing similar works and the performance of the presented recommendation sys-
tem has been evaluated. The system can find good use among the researchers and
practitioners for getting the recommendations regarding the selection of suitable fault
prediction techniques. In support of the presented architecture, a prototype system has
also been implemented.

Acknowledgements The authors would like to thank the editor of the journal and the anonymous reviewers
for their valuable comments, guidance, and suggestions that have really improved the quality of the paper
and have led to the paper in its current form. Further, wewould like to thank theMinistry of HumanResource
Development (MHRD), India for providing institute assistantship.

References

1. Sheskin DJ (2003) Handbook of parametric and nonparametric statistical procedures. CRCPress, Boca
Raton

2. Zimmermann T, Nagappan N, Zeller A (2008) Predicting bugs from history. Softw Evol J. Springer,
Berlin, pp 69–88

3. Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener A (2010) Defect prediction from static code
features: current results, limitations, new approaches. Autom Softw Eng J

4. Fenton NE, Neil M (1999) A critique of software defect prediction models. IEEE Trans Softw Eng
25(5):675–689

5. Briand LC, Daly JW,Wust J (1998) A unified framework for cohesion measurement in object-oriented
systems. Empir Softw Eng 3(1):65–117

6. Alshayeb M, Li W (2003) An empirical validation of object-oriented metrics in two different iterative
software processes. IEEE Trans Softw Eng 29(11):1043–1049

7. LiW, Henry S (1993) Object-oriented metrics that predict maintainability. J Syst Softw 23(2):111–122
8. Xing F, Guo P, Lyu MR (2005) A novel method for early software quality prediction based on sup-

port vector machine. In: Proceeding of 16th IEEE international symposium on software reliability
engineering, pp 10–19

9. Khoshgoftaar TM, Ganesan K, Allen EB, Ross FD, Munikoti R, Goel N, Nandi A (1997) Predicting
fault-prone modules with case-based reasoning. In: Proceedings of 8th international symposium on
software reliability engineering, pp 27–35

10. Guo L, Ma Y, Cukic B, Singh H (2004) Robust prediction of fault-proneness by random forests. In:
Proceeding of 15th international symposium on software reliability engineering, pp 417–428

11. Catal C, Diri B (2009) Investigating the effect of dataset size, metrics sets, and feature selection
techniques on software fault prediction problem. Inf Sci J 179(8):1040–1058

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 283

12. Challagulla UV, Bastani FB, Yen IL (2006) A unified framework for defect data analysis using the mbr
technique. In: Proceeding of 18th IEEE international conference on tools with artificial intelligence,
pp 39–46

13. Jiang Y, Cukic B, Ma Y (2008) Techniques for evaluating fault prediction models. Empir Softw Eng
13(5):561–595

14. Sun Z, Song Q, Zhu X (2012) Using coding-based ensemble learning to improve software defect
prediction. IEEE Trans Syst Man Cybern Part C Appl Rev 42(6):1806–1817

15. Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking classification models for software
defect prediction: a proposed framework and novel findings. IEEE Trans Softw Eng 34(4):485–496

16. Vandecruys O, Martens D, Baesens B, Mues C, De Backer M, Haesen R (2008) Mining software
repositories for comprehensible software fault prediction models. J Syst Softw 81(5):823–839

17. Dejaeger K, Verbraken T, Baesens B (2013) Toward comprehensible software fault prediction models
using bayesian network classifiers. IEEE Trans Softw Eng 39(2):237–257

18. Kanmani S, Uthariaraj VR, Sankaranarayanan V, Thambidurai P (2007) Object-oriented software fault
prediction using neural networks. Inf Softw Technol 49(5):483–492

19. Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project defect prediction: a
large scale experiment on data vs. domain vs. process. In: Proceedings of the 7th joint meeting of the
ESEC and FSE, pp 91–100

20. Pickard L, Kitchenham B, Linkman S (1999) An investigation of analysis techniques for software
datasets. In: Proceedings of 6th international software metrics symposium, pp 130–142

21. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan
Kaufmann, Burlington

22. Martinez J, Fuentes O (2005) Using c4.5 as variable selection criterion in classification tasks. In: Pro-
ceedings of the 9th international conference on artificial intelligence and soft computings. Benidrom,
Spain

23. Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. In: Proceed-
ings of emerging artificial intelligence applications in computer engineering, pp 3–24

24. Fitzpatrick JM, Grefenstette JJ (1988) Genetic algorithms in noisy environments. Mach Learn 3(2–
3):101–120

25. Rokach L (2005) Ensemble methods for classifiers. In: Data mining and knowledge discovery hand-
book. Springer, Berlin, pp 957–980

26. Xuan L, Zhigang C, Fan Y (2013) Exploring of clustering algorithm on class-imbalanced data. In:
Proceeding of 8th international conference on computer science and education. IEEE, New York, pp
89–93

27. Manago M, Kodratoff Y (1987) Noise and knowledge acquisition. In: IJCAI, pp 348–354
28. Gao K, Khoshgoftaar TM, Wang H, Seliya N (2011) Choosing software metrics for defect prediction:

an investigation on feature selection techniques. Softw Pract Exp 41(5):579–606
29. Rodriguez D, Ruiz R, Cuadrado-Gallego J, Aguilar-Ruiz J, Garre M (2007) Attribute selection in

software engineering datasets for detecting fault modules. In: Proceedings of 33rd EUROMICRO
conference on software engineering and advanced applications, pp 418–423

30. Graves TL, Karr AF,Marron JS, Siy H (2000) Predicting fault incidence using software change history.
IEEE Trans Softw Eng 26(7):653–661

31. Charu C (2013) Aggarwal. Outlier analysis. Springer Science and Business Media, Berlin
32. Moreno-Torres JG, Raeder T, Alaiz-Rodriguez R, Chawla NV, Herrera F (2012) A unifying view on

dataset shift in classification. Pattern Recognit 45(1):521–530
33. Calikli G, Bener A (2013) An algorithmic approach to missing data problem in modeling human

aspects in software development. In: Proceedings of 9th international conference on predictive models
in software engineering. ACM, New York

34. Tan M, Tan L, Dara S, Mayeux C (2015) Online defect prediction for imbalanced data. In: Proceeding
of international conference on software engineering

35. Kim S, Zhang H, Wu R, Gong L (2011) Dealing with noise in defect prediction. In: 33rd international
conference on software engineering, pp 481–490

36. Grbac T, Mausa G, Basic BD (2013) Stability of software defect prediction in relation to levels of data
imbalance. In: SQAMIA, pp 1–10

37. Vu B, Challagulla FB, Bastani IL, Paul RA (2008) Empirical assessment of machine learning based
software defect prediction techniques. Int J Artif Intell Tools 17(02):389–400

123

www.manaraa.com

284 S. S. Rathore, S. Kumar

38. Succi G, Pedrycz W, Djokic S, Zuliani P, Russo B (2005) An empirical exploration of the distributions
of the chidamber and kemerer object-oriented metrics suite. Empir Softw Eng 10(1):81–104

39. Fayyad UM, Irani KB (1992) On the handling of continuous-valued attributes in decision tree gener-
ation. Mach Learn 8(1):87–102

40. Murphey YL, Guo H, Feldkamp LA (2004) Neural learning from unbalanced data. Appl Intell
21(2):117–128

41. SmithMR,Martinez T (2011) Improving classification accuracy by identifying and removing instances
that should be misclassified. In: Proceeding of 2011 international joint conference on neural networks,
pp 2690–2697

42. Sharpe PK, Solly RJ (1995) Dealing with missing values in neural network-based diagnostic systems.
Neural Comput Appl 3(2):73–77

43. Venkatesh S, Gopal S (2011) Robust heteroscedastic probabilistic neural network for multiple source
partial discharge pattern recognition-significance of outliers on classification capability. Exp Syst Appl
38(9):11501–11514

44. Haupt RL, Haupt SE (2004) Practical genetic algorithms. Wiley, New York
45. Allison PD (2001) Missing data, vol 136. Sage Publications, Chennai
46. Smith SF (1980) A learning system based on genetic adaptive algorithms. PhD thesis
47. Afzal W, Torkar R, Feldt R (2008) Prediction of fault count data using genetic programming. In:

Proceeding of international multitopic conference, pp 349–356
48. Fonseca CM, Fleming PJ (1993) Multiobjective genetic algorithms. In: IEE colloquium on genetic

algorithms for control systems engineering. IET, Thiruvananthapuram, pp 1–6
49. Li F, Li H (2012) Svm classification for large data sets by support vector estimating and selecting. In:

Recent advances in computer science and information engineering. Springer, Berlin, pp 775–781
50. Hastie T, Tibshirani R, Friedman J, Franklin J (2005) The elements of statistical learning: data mining,

inference and prediction. Math Intell 27(2):83–85
51. Debruyne M (2009) An outlier map for support vector machine classification. Ann Appl Stat 1566–

1580
52. Khoshgoftaar TM, Seliya N (2003) Fault prediction modeling for software quality estimation: com-

paring commonly used techniques. Empir Softw Eng 8(3):255–283
53. Mauvsa G, Grbac TG, Bavsic BD (2012) Multivariate logistic regression prediction of fault-proneness

in software modules. In: Proceedings of the 35th international convention, pp 698–703
54. Ratanamahatana CA, Gunopulos D (2002) Scaling up the naive bayesian classifier: using decision

trees for feature selection
55. Briand L, Devanbu P,MeloW (1997) An investigation into couplingmeasures for c++. In: Proceedings

of 19th international conference on software engineering, pp 412–421
56. Ghimire B, Rogan J, Galiano VR, Panday P, Neeti N (2012) An evaluation of bagging, boosting,

and random forests for land-cover classification in cape cod, massachusetts, usa. GISci Remote Sens
49(5):623–643

57. HinneburgA,Aggarwal CC,KeimDA (2000)What is the nearest neighbor in high dimensional spaces?
In: Proceedings of the 26th international conference on very large data bases, VLDB ’00, pp 506–515

58. Jiamthapthaksin R, Eick CF, Vilalta R (2009) A framework for multi-objective clustering and its
application to colocation mining. In: Advanced data mining and applications. Springer, Berlin, pp
188–199

59. Acuna E, Rodriguez C (2004) The treatment of missing values and its effect on classifier accuracy. In:
Classification, clustering, and data mining applications. Springer, Berlin, pp 639–647

60. Amatriain X, Jaimes A, Oliver N, Pujol JM (2011) Data mining methods for recommender systems.
In: Recommender systems handbook. Springer, Berlin, pp 39–71

61. MaY,GuoL,CukicB (2006)A statistical framework for the prediction of fault-proneness. In:Advances
in machine learning application in software engineering. Idea Group Inc, Calgary, pp 237–265

62. Karimi K, Hamilton HJ (2002) Timesleuth: a tool for discovering causal and temporal rules. In:
Proceedings of 14th IEEE international conference on tools with artificial intelligence. IEEE, New
York, pp 375–380

63. Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering.
IEEE Trans Knowl Data Eng 17(4):491–502

64. Law HCM, Topchy AP, Jain AK (2004) Multiobjective data clustering. In: Proceedings of IEEE
computer society conference on computer vision and pattern recognition, vol 2, pp II-424

65. Mitchell TM (1997) Machine learning, vol 1. McGraw-Hill, USA

123

www.manaraa.com

A DTL based recommendation system to select SFP techniques 285

66. Owoc ML, Galant V (1999) Validation of rule-based systems generated by classification algorithms.
In: Evolution and challenges in system development. Springer, Berlin, pp 459–467

67. Khoshgoftaar TM, Seliya N (2002) Tree-based software quality estimation models for fault prediction.
In: Proceedings of the eighth IEEE symposium on software metrics. IEEE, New York, pp 203–214

68. Arisholm E, Briand LC, Fuglerud M (2007) Data mining techniques for building fault-proneness
models in telecom java software. In: Proceeding of 18th IEEE international symposium on software
reliability, pp 215–224

69. Elish OK, Elish MO (2008) Predicting defect-prone software modules using support vector machines.
J Syst Softw 81(5):649–660

70. Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature review on fault
prediction performance in software engineering. IEEE Trans Softw Eng 38(6):1276–1304

71. Shihab E (2012) An exploration of challenges limiting pragmatic software defect prediction. PhD
thesis, Queens University

72. Nam J (2014) Survey on software defect prediction. PhD Thesis, Hong Kong University of Science
and Technology

123

www.manaraa.com

Computing is a copyright of Springer, 2017. All Rights Reserved.

	A decision tree logic based recommendation system to select software fault prediction techniques
	Abstract
	1 Introduction
	2 Related work
	3 Classification of software fault prediction techniques
	4 Proposed recommendation system
	4.1 Architecture of the proposed recommendation system
	4.2 System work flow
	4.2.1 Dataset characteristics
	4.2.2 Generation of decision tree

	5 Experimental setup
	5.1 Detail of the dataset
	5.2 Evaluation

	6 Case study
	7 Comparative evaluation
	8 Conclusions
	Acknowledgements
	References

